## **Technical Information** # Palatinol® N | Edition dated July 2019 | Valid for product produced | in Ludwigshafen only | | Page 1 of | |-------------------------------------|----------------------------------------------------------------------------------|----------------------|------------------------------------------------|---------------------------------| | ® = Registered trademark of BASF SE | : | | | | | | Versatile low-viscosity p | | ith good low tei | mperature | | Chemical nature | Phthalic acid ester with less branched isononanols, diisononyl phthalate | | | | | | Molecular formula | | C <sub>26</sub> H <sub>42</sub> O <sub>4</sub> | | | | CAS number | | 28553-12-0 | | | | EC number | | 249-079-5 | | | | Abbreviation (DIN EN ISO 1043-3) | | DINP | | | Delivery specification | Property | Value | Unit | Test method<br>DIN/ASTM | | | Dynamic viscosity*<br>at 20 °C | 68 – 82 | mPa · s | ASTM D 7042 | | | Density* at 20 °C | 0.970 – 0.977 | g/cm³ | DIN 51757<br>ASTM D 4052 | | | Platinum-cobalt color | 30 max. | | DIN EN ISO 6271<br>ASTM D 1209 | | | Refractive index* $n_D^{20}$ | 1.484 – 1.488 | | DIN 51423-2<br>ASTM D 1045 | | | Acid value | 0.06 max. | mg KOH/g | DIN EN ISO 2114<br>ASTM D 1045 | | | Ester content | 99.5 min. | % by area | GC-method BASF | | | Water content | 0.05 max. | % by weight | DIN 51777, Part 1<br>ASTM E 203 | | | *These properties are not measured routinely. | | | | | | On request, Palatinol® N can also be supplied in a form stabilized with Irganox® | | | | 1010. Please refer to the Technical Information of Palatinol® N Stab (Irganox®). #### **Properties** Palatinol® N is a nearly colorless, clear and practically anhydrous liquid with a hardly noticeable odor. It is soluble in the usual organic solvents and is miscible and compatible with all of the monomeric plasticizers commonly used in PVC. Palatinol® N is almost insoluble in water. ### Physical data The following physical data were measured in the BASF SE laboratories. They do not represent any legally-binding guarantee of properties for our sales product. | Molar mass | 418.6 g/mol | |----------------------------------------------------------------------------|-------------------------------| | Pour point (DIN ISO 3016) | -54 °C | | Solution temperature at the clear point (5 % S-PVC; K-value 71; DIN 53408) | 132 °C | | Surface tension at 20 °C (DIN EN 14370) | 31 mN/m | | Electrical conductivity 20 °C | 0.055 μS/cm | | Volume resistivity 20 °C (IEC 60093) | 2 · 10 <sup>11</sup> Ohm · cm | | Vapor pressure | T [°C] | | p [hPa] | | |-------------------------------------------|-----------------------|----------------------------------------------------------|------------------------|--| | | 50 | | 4.0 · 10 <sup>-7</sup> | | | | 60 | | 1.7 · 10-6 | | | | 70 | | 7.2 · 10 <sup>-6</sup> | | | | 80 | | 2.6 · 10 <sup>-5</sup> | | | | 90 | | 8.8 · 10 <sup>-5</sup> | | | | 100 | | 2.6 · 10-4 | | | | 120 | | 1.9 · 10 <sup>-3</sup> | | | | 140 | | 1.1 · 10 <sup>-2</sup> | | | | 160 | | 4.7 · 10 <sup>-2</sup> | | | | 180 | | 0.17 | | | | 200 | | 0.56 | | | | 220 | | 1.60 | | | | 240 | | 4.11 | | | | 260 | | 9.63 | | | | 280 | | 20.9 | | | Antoine constants for (p in bar; T in °C) | In (p)<br>A<br>B<br>C | = A + B / (C + T)<br>= 12.3452<br>= -7114.32<br>= 158.79 | | | (The Antoine constants were determined from vapor pressure data measured in the temperature range of 200 °C to 280 °C by a dynamic method in a nitrogen atmosphere. The values in the table were calculated using the Antoine equation. The data serve only as a rough guide.) Density and viscosity dependent on temperature | Temperature<br>[°C] | Density*<br>ρ [g/cm³] | Dyn. Viscosity**<br>η [mPa · s] | |---------------------|-----------------------|---------------------------------| | -10 | 0.994 | 600 | | 0 | 0.987 | 280 | | 10 | 0.980 | 137 | | 20 | 0.972 | 72 | | 30 | 0.965 | 41 | | 40 | 0.958 | 25 | | 50 | 0.950 | 17 | <sup>\*</sup>Calculated using the following equation: $\rho$ = (- 0.000733·t + 0.9871) from data measured by BASF SE. ( $\rho$ = Density in g/cm³, t = Temperature in °C) Specific heat $C_{\text{P}}$ (calorimetric) and thermal conductivity $\lambda$ dependent on temperature | Temperature [°C] | Specific heat C <sub>P</sub> [J/(g · K)] | Thermal conductivity $\lambda^*$ [W/m · K] | |------------------|------------------------------------------|--------------------------------------------| | 20 | | 0.134 | | 25 | 1.75 | 0.136 | | 40 | 1.82 | 0.136 | | 60 | 1.88 | 0.138 | | 80 | 1.93 | 0.140 | | 100 | 2.00 | 0.142 | | 120 | | 0.144 | | 140 | | 0.146 | <sup>\*</sup> Calculated using the following equation: $\lambda = (0.0001 \cdot t + 0.13225)$ from data measured by BASF SE. Net and gross calorific value measuredaccording to ISO 1716 | Net calorific<br>value Hu [MJ/Kg] | Gross calorific value Ho [MJ/Kg] | |-----------------------------------|----------------------------------| | 33.8 | 36 | #### Storage & Handling Palatinol<sup>®</sup> N can be stored in tanks and drums constructed from normal carbon steel, e. g. A 283 grade. If severe demands are imposed on the product quality, we recommend to store it in tanks constructed from stainless steel, e. g. AISI TP 316 Ti (German steel No. 1.4541) or aluminum (AIMg3). It is recommended to take steps to ensure the exclusion of atmospheric moisture, e. g. by storing under a blanket of dry nitrogen, as otherwise the product quality may deteriorate, e. g. the water fraction may rise, or the Palatinol® N may be discolored by rust in normal steel tanks. Drums containing the product should be kept tightly closed in a well-ventilated place. Palatinol $^{\rm I\! B}$ N can be stored for one year at temperatures below 40 $^{\circ}$ C, if moisture is excluded. #### Pumps: Cast-steel centrifugal pumps with a simple slip-ring seal are suitable. <sup>\*\*</sup> Calculated according to Schwen und Puhl ([1], Formula 12) from data measured by BASF SE Flange seals: An example of a suitable material for seals is chemical-resistant Polytetra-fluoroethylene (PTFE). Other plastics should be checked for suitability before they are taken into use. Literature [1] Schwen, R. und Puhl, H. "Fehlersuche bei Viskositaet-Temperatur-Messungen", Erdoel und Kohle-Erdgas-Petrochemie, Vol. 45, April 1992: Part A: "Problematik, Formelpaket und mathematisches Procedere", issue 4, pages 161 ff. Part B: "Resultate, Nuetzlichkeit", issue 6, pages 253 ff. Safety When using this product, the information and advice given in our **Safety Data Sheet** should be observed. Due attention should also be given to the **precautions** necessary for handling chemicals. Note The data contained in this publication are based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, these data do not relieve processors from carrying out their own investigations and tests; neither do these data imply any guarantee of certain properties, nor the suitability of the product for a specific purpose. Any descriptions, drawings, photographs, data, proportions, weights etc. given herein may change without prior information and do not constitute the agreed contractual quality of the product. It is the responsibility of the recipient of our products to ensure that any proprietary rights and existing laws and legislation are observed. July 2019